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Topological Cacti: Visualizing Contour-based
Statistics

Gunther H. Weber, Peer-Timo Bremer and Valerio Pascucci

Abstract Contours, the connected components of level sets, play an important role
in understanding the global structure of a scalar field. In particular their nesting
behavior and topology—often represented in form of a contour tree—have been
used extensively for visualization and analysis. However, traditional contour trees
only encode structural properties like number of contours or the nesting of contours,
but little quantitative information such as volume or other statistics. Here we use the
segmentation implied by a contour tree to compute a large number of per-contour
(interval) based statistics of both the function defining the contour tree as well as
other co-located functions. We introduce a new visual metaphor for contour trees,
called topological cacti, that extends the traditional toporrery display of a contour
tree to display additional quantitative information as width of the cactus trunk and
length of its spikes. We apply the new technique to scalar fields of varying dimension
and different measures to demonstrate the effectiveness of the approach.

1 Introduction

Isosurfaces [10, 13, 14] are an extremely versatile and ubiquitous component of
data analysis since distinct isosurfaces often have a useful physical interpretation
directly related to the application domain. In premixed combustion simulations, for
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example, an isotherm (isosurfaces of temperature) of the appropriate temperature is
often associated with the location of the flame; in molecular simulations, isosurfaces
of a certain charge density indicate molecular boundaries; and in fluid simulations,
isosurfaces can be used to identify an interface between mixing fluids. Furthermore,
isosurfaces provide a geometric representation of scientific data that supports the
definition of further derived quantities (such as surface area) that are useful for an
in-depth analysis.

Due to their importance, isosurfaces and in particular their topology have been
the focus of an extensive body of research. In particular, the dependence of isosur-
face properties as a function of the isovalue has been examined in detail. Tradition-
ally, there are two complementary types of information derived to aid in identifying
interesting and relevant isosurfaces. Structural approaches, often based on the con-
tour tree, provide information about individual contours, the connected components
of isosurfaces, and how their number changes as the isovalue varies. The other class
of approaches, including the contour spectrum, derive quantitative measurements,
such as surface area from the isosurfaces, and plot these quantities as a function of
isovalue. While providing quantitative information about the isosurface, informa-
tion about individual connected components is lost, and these approaches usually
result in a single one-dimensional function plot.

It is possible to combine these two complementary techniques by considering
the segmentation implied by the contour tree. Each arc in the contour tree corre-
sponds to a region swept by the contours represented by the arc. Using this seg-
mentation, it is possible to calculate measurements on a per-contour basis. In this
paper, we introduce topological cacti, a new visualization metaphor for the contour
tree that incorporates these segmentation-based quantitative measurements into the
graph display. Like the toporrery [15], topological cacti utilize a radial graph layout
in three dimensions to avoid self-intersections. However, topological cacti also sup-
port the display of quantitative measures along with the graph. We draw graph edges
of the toporerry as cylindrical extrusions and map a selected quantity to graph edge
radius. We augment this visualization by adding spikes to display a second quantity,
thus completing the cactus metaphor.

We will now describe how to display topological cacti. As a first step, we calcu-
late measurements based on the segmentation implied by the contour tree (Sect. 3).
In particular, we compute the contour spectrum for individual contours to provide
per-contour area and volume measures (Sect. 3.1). Subsequently, we describe how
to use this information in layout computation of topological cacti (Sect. 4). We il-
lustrate the concept of topological cacti on example data sets using the per-contour
representation of the contour spectrum (Sect. 5). We also demonstrate the display
of other derived quantities, such as those associated with a join/merge tree resulting
from the analysis of combustion simulations, as well as merge trees derived from
higher-dimensional data.
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2 Background and Related Work

2.1 Contour Trees

The contour tree [2] is a special case of the more generally defined Reeb graph [16]
and captures the topological evolution of an isosurface as the isovalue varies. Crit-
ical points, where the number of contours changes, appear as nodes in the contour
tree. Nodes of degree one (leaves of the tree) correspond to extrema, where con-
tours are created or destroyed. Interior nodes of degree three or higher correspond
to “saddles,” where two or more contours merge or split. Arcs of the contour tree
represent contours between critical points, i.e., contours that do not change topology
(with the exception of genus changes) as the isovalue varies between critical values.

Conceptually, one can compute the contour tree by considering an isosurface
for a particular isovalue and collapsing each contour (connected component) into
a single point. Performing this process for each isovalue yields the graph structure
described in the previous paragraph. However, currently most algorithms for com-
puting the contour tree are based on the work by Carr et al. [5] and take a different,
computationally more efficient approach. Instead of computing the contour tree di-
rectly, this algorithm starts by computing two simpler graphs, the join (or merge)
tree and the split tree. The join tree tracks how connected regions above a thresh-
old join as the threshold is decreased, and it can be computed efficiently using a
union-find approach. The split tree analogously traces the behavior of regions be-
low a threshold as that threshold is increased. A second phase of the algorithm uses
join and split tree to compute the contour tree using graph-based operations. While
join trees and split trees have been introduced in the context of contour tree calcula-
tion, they are also useful as structures in their own right. For example, they represent
all possible segmentations based on thresholding and enables extensive parameter
studies based on those segmentations [3].

Contour trees of even moderately-sized data sets can be quite complex. This
complexity can be due to either noise or the presence of features at various scales.
To remove noise, or features at smaller scale, it is necessary to simplify the contour
tree. Carr et al. [6] simplified the contour tree using two operations: an arc-pruning
operation to remove an extremum by “chopping” off a branch of the contour tree,
and a vertex collapse to remove the resulting degree two node. Local geometric
measures, like persistence (difference in function value) or volume, define an order
in which arcs are pruned, i.e., what isosurface features are deemed less important
and are removed first. Takahashi et al. [20, 19] use the related volume skeleton
tree to simplify topology in a similar fashion. In subsequent work, they utilized the
results, e.g., for the design of transfer functions that emphasize topology and take
contour nesting properties into account [21].

Pascucci et al. [15] proposed the branch decomposition of the contour tree as an
efficient data structure for encoding a multi-resolution representation of the contour
tree. This representation decomposes the contour tree into a set of branches stored
as a rooted tree. A root branch connects a minimum-maximum pair in the contour
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tree. Other extrema are ordered by an importance metric (e.g., persistence), and
child branches connect them to a saddle in an existing branch. In the resulting tree,
each extremum appears as part of a branch, and the level in which a branch appear
corresponds to its importance. The less important a branch is, the further down in
the tree it appears. Using this data structure, it is possible to traverse the contour tree
efficiently up to a desired level of detail (as specified by the importance metric).

2.2 Contour Tree Visualization

The contour tree is a graph and it is possible to display it using standard graph
drawing algorithms like those provided by the GraphViz package [8]. Traditional
layouts of the contour tree usually constrain the height of nodes to correspond to
function value. This layout has the advantage that a horizontal line drawn at the
height for a given isovalue intersects as many edges (or nodes) in the contour tree
as there are contours for that value. This property significantly increases readability
of the graph. More recently, Heine et al. [9] presented a fast and effective technique
for contour tree layout in the plane.

One disadvantage of the height constraint is that it is not always possible to lay-
out the contour tree without self-intersection. To avoid this problem, Pascucci et
al. [15] proposed an alternative three-dimensional radial layout for the contour tree.
This layout is motivated by using an orrery, i.e., a mechanical device that illustrates
relative positions of planets and moons in the solar system, as a metaphor. Extrema
take the place of planets and moons, and the toporrery shows the hierarchical rela-
tionship between the branches connecting them.

The toporrery preserves the contour tree as a graph, and its layout is related to
traditional radial graphic layouts. As such, it does not provide information beyond
the graph structure of the contour tree. An alternate approach uses structural in-
formation to illustrate the nesting behavior of contours [18]. Mizuta et al. [12, 11]
computed contour trees on digital image data and visualized the resulting trees using
the contour nest. The contour nest focuses on the nesting properties of isosurfaces
and represents the contour tree as a set of nested rectangles. In this visualization,
rectangle size corresponds to feature size (area in 2D and volume in 3D). However,
the contour nest displays only a global value for each branch and does not show how
measures vary as the isovalue of a contour changes.

Topological landscapes [22] utilize another metaphor to visualize a contour tree.
Observing that the contour tree was originally introduced in the context of two-
dimensional terrains and that a terrain can have the topology implied by a contour
tree, this metaphor constructs a terrain that has the same topology as the contour tree.
In this way, the terrain serves as a proxy representation for a higher-dimensional
(three dimensions or more) data set. To improve the expressiveness of the terrain
metaphor, it is possible to re-parametrize the terrain in such a way that the area of
features corresponds to a specified metric (e.g., volume associated with a branch of
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the branch decomposition). Like the contour nest, the construction scheme is limited
to visualizing on the branch level, i.e., variations within a branch are ignored.

2.3 Contour Spectrum

While the contour tree provides structural information about an isosurface and the
behavior of individual components, it does not provide quantitative information.
The contour spectrum [1] on the other hand provides global measures for an isosur-
face as a function of isovalue. Observing that the surface area of an isosurface in a
tetrahedral mesh can be expressed as a B-Spline, the authors develop a framework
that encodes total surface area, exterior and interior volume, as well as gradient
magnitude.

Fundamentally, the authors use the connection between isosurfaces on a tetrahe-
dral mesh and simplex splines. Based on this relationship, they derive a B-Spline
representation of isosurface area as a function of isovalue within an individual tetra-
hedron of the data set. Combining the B-Spline functions of all individual tetrahedra
of a given mesh results in a B-Spline representation of the entire data set. The au-
thors subsequently derive a second B-Spline describing the volume enclosed in the
isosurface by integrating the area B-Spline.

3 Computing Per-Component Measures

To display per-component information about an isosurface, we need to compute
it and associate it with the contour tree. For the purpose of computing these
measures, we extend the contour spectrum to provide per-component measures
(Sect. 3.1) or calculate measures based on the segmentation implied by the contour
tree (Sect. 3.3). While prior work uses, e.g., interval volumes [7], to derive mea-
sures such as area and volume for contours (i.e., connected isosurface components),
our approach provides these measures as a function of isovalue that is associated
with contour tree edges. This function representation makes it possible to compute
an individual, contour-specific area or volume for any isovalue along an edge, as
opposed to approximating a single volume for an entire edge like prior work on
topology simplification [20, 21].

In this context, it is beneficial to use the branch decomposition of the contour
tree. (i) Branches in this decomposition may combine several arcs of the contour tree
and therefore the segmentation consists of fewer regions. Nevertheless, each contour
maps uniquely to a unique branch and a value along the branch. (ii) The hierarchical
nature of the branch decomposition simplifies finding paths in the contour tree. (iii)
The topological cactus layout is based on the toporrery layout, which is inherently
based on the branch decomposition.
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3.1 Computing the Contour Spectrum

We compute per-component measures of area and volume using the contour spec-
trum. Computing the area is relatively straightforward, as there are no ambiguities.
Associating volume with the contour tree is more difficult, since for nested contours
the definition of enclosed volume is ambiguous. For both measurements, we asso-
ciate either a B-Spline or a piecewise polynomial function with each branch of the
branch decomposition.

3.2 Computing per-contour Area

Calculating the contour spectrum globally relies on the fact, that within a tetrahedral
cell surface area can be expressed as a function of isovalue as a B-Spline. In the
original contour spectrum algorithm, contributions of all tetrahedra are accumulated
into a global B-Spline. To compute area on a per-component basis, we associate a
B-Spline (or alternatively a piecewise polynomial function) with each branch of the
branch decomposition, and accumulate contributions per-component.

For accumulating per-component area, we observe that linear tetrahedra do not
contain any critical points in their interior. In particular, they do not contain any
saddles. Consequently, the “contour tree” for the individual tetrahedra is a straight
line, ranging from its minimum vertex to its maximum vertex. Thus, in the contour
tree a tetrahedron corresponds to a single path between two vertices (not necessarily
nodes), along which the function value uniquely identifies the contour containing
this tetrahedron. As a result, we can consider each tetrahedron and accumulate its
contributions to the branch decomposition.

We perform this accumulation as follows. First, we compute contour tree and
branch decomposition. We also compute the segmentation of the data set implied
by the contour tree. This segmentation is stored as an array with an entry for each
sample of the data set that contains a reference to the single branch within the de-
composition that corresponds to the sample.

Subsequently, we accumulate the contributions of all tetrahedra to the contour
spectrum. For each tetrahedron, we first determine its minimum and its maximum
vertex. These vertices define the path in the contour tree along which contributions
have to be accumulated, as shown in Fig. 1. We use the segmentation information to
identify the branches corresponding to the minimum and maximum value.

We then find the path in the branch decomposition that connects the minimum
and the maximum. Since the branch decomposition is a rooted tree (of branches),
we simply find the common ancestor branch of the minimum and maximum vertex
to construct their connecting path, see Fig. 1. In the figure, the root branch is the
common branch, the path from the maximum to the root traverses two branches and
the path from the minimum traverses one branch. Therefore, two lists of branches
descending from the minimum and the maximum, as well as the common branch
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Fig. 1 Computing the contour spectrum utilizing the branch decomposition. A linear tetrahedron
corresponds to a path in the branch decomposition. After identifying this path connecting the tetra-
hedron’s maximum and minimum vertex, we add appropriate contributions to the contour spectrum
associated with each branch.

connecting the last branches in these lists, completely define the path in the branch
decomposition.

Subsequently, we split the B-Spline or piecewise polynomial function into seg-
ments corresponding to the branches along the path. For the first branch from the
maximum, this segment corresponds to the range from the maximum tetrahedron
value to its saddle. For all subsequent branches along the path, the segment corre-
sponds to the range from the saddle value of the previous branch along the path
to the saddle value of the current branch. Segments for the minimum path are de-
fined analogously. Finally, the segment along the branch connecting the two paths
corresponds to the range between the two saddle values.

3.2.1 Computing per-contour Volume

Computing per-contour volume is more difficult. If a contour contains another con-
tour, it is ambiguous, whether the volume of the nested contour should be subtracted
or not. To avoid ambiguities, we follow the convention that we calculate volume
from the last saddle. Thus, the volume associated with a contour corresponds to
the volume swept by that contour as long as it “maintained its identity,” i.e. since
its last “interaction” with another contour. Adding the contribution to the branch
decomposition is similar to adding the contribution for the area. There are two key
differences: Instead of stopping at the maximum value of the tetrahedron, the contri-
bution on the maximum branch reaches until the next saddle value. This difference
is due to the fact that once the maximum value of the tetrahedra is passed the volume
function is a constant corresponding to the volume of the tetrahedron. Furthermore,
following our convention, for each segment, we subtract the volume at the saddle
from the entire function, such that for each segment only the volume swept since
the saddle is considered.
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Unlike the original contour spectrum approach, we also observe that obtaining
the volume by integrating the area yields incorrect results. Expressing the volume as
integral of area corresponds to a substitution of the integration variable, and we need
to multiply the result by the derivative, which corresponds to multiplication with the
inverse gradient magnitude. This is analogous to observations on computing other
isosurface statistics [17].

3.3 Segmentation-based Measures

Visualizing volume and area already enhances contour tree display and provides
valuable information about a function. However, in many application areas, it is
desirable to display additional statistics, such as the mean value of a second variable
on the isosurface. We compute these values at discrete locations of the contour tree
or the join tree. To compute these values, we consider the segmentation implied
by the contour tree [23] or the join tree [3] and accumulate these statistics for all
samples corresponding to a branch or arc. This calculation would yield a single
value per branch. To approximate function behavior along a branch or arc, we split
it at regular intervals and insert degree two nodes into the join tree. When computing
the branch decomposition, we associate these function values with the branch. This
approach basically approximate calculating statistics with a segmentation defined in
interval volumes [20].

4 Topological Cacti Layout

For generating topological cacti, we use an radial graph layout identical to that of
the toporrery [15]. Extrema are ordered in concentric discs, where the disc is chosen
based on the depth of an extremum in the branch decomposition. Like in the original
toporrery, the radius ratio is constant in our layout, and each branch is assigned a
radial wedge with an angle proportional to the number of child branches. To display
metrics, we draw each branch as cylindrical extrusion and chose the radii accord-
ing to a first selected measure (clamping however at a minimum radius to ensure
that branches do not disappear). We draw connectors as sphere sweeps to ensure
smooth connection of the cylindrical extrusion corresponding to parent and child
branch. Before mapping a metric such as volume to radius, we support choosing
a variety of transformation functions (square root, cube root, logarithm) to ensure
that higher-dimensional properties are appropriately scaled to the one dimensional
radius. This is analogous to a similar transformation before mapping volume to area
in the topological landscapes [22].

For display of a second metric, we augment the cylindrical extrusions with
spikes. We start by placing circles along regular intervals of the cylindrical extru-
sion and choosing angles in regular intervals along this circle. We then choose spike
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location by jittering these regular samples, i.e., we add random offset angles and
heights to the originally chosen spike locations. We then calculate the metric value
for the function value corresponding to the (jittered) height. Spikes are drawn as
cones with a fixed (user defined) base radius and a length depending on the metrics.
Similar to the extrusion radius, we support user chosen mappings such as square
root, cube root or logarithm.

5 Results

Fig. 2 Topological cactus for the hydrogen atom (left) and isosurface rendering of the correspond-
ing data set (right). The root branch in the center corresponds to the contour in the center of the
ring. The two symmetric branches correspond to the two lobes, and the lowest branch to the ring.
The branch width corresponds to the cube root of enclosed volume, and spike length to the square
root of surface area.

Figure 2 shows an example of a topological cactus for the hydrogen atom data
set (simplified to a persistence of ten). Branch width corresponds to the cube root
of volume and spike length to the square root surface area. The root branch corre-
sponds to the evolution of the contour in the center. It is immediately obvious that
despite its very high persistence (resulting in it being chosen as root branch), both
its volume and surface area are very small. The two lobes, corresponding to the two
symmetric branches are much larger in both volume and surface area. Finally, the
ring, corresponding to the lowest branch, has the largest volume and area.

Figure 3 shows the topological cactus for the methane data set. The image on the
right hand side shows corresponding isosurfaces. The red isosurface corresponds to
a level close to the maxima and consists of twelve contours that are created around
the twelve maxima visible on the cactus. As the cactus view shows, the three con-
tours of each “arm” merge first, and subsequently these four “arms” merge into a
single contour. At a lower isovalue, this contour splits into two separate contours.
The cactus shows, how the volume of these components varies with the isovalue.
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Fig. 3 Topological cactus for the methane molecule (left) and isosurface rendering of the cor-
responding data set (right). The right hand image shows isosurfaces for two isovalues. The red
isosurface corresponds to isovalue close to the maximum value and shows contours created around
the twelve maxima. The gray isosurface corresponds to a lower isovalue at a level where all twelve
red contours have merged and then split into two separate components. In the cactus display, branch
width corresponds to the cube root of volume and spike length to the square root of area.

For example, surface area and volume of the outer component remain relatively
constant, while the inner component shrinks slowly and disappears.

Fig. 4 Topological cactus for the nucleon (left) and isosurface rendering of the corresponding data
set (right). Branch width corresponds to the cube root of volume, and spike length to the square
root of surface area. The cactus only shows branches with a minimum persistence of three (data
values are quantized to byte values).

Figure 4 shows the nucleon data set (simplified to a persistence of three). The
right hand side shows isosurfaces at two levels (in separate images due to complex-
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ity). The lower isosurface image shows contours just below the second lowest saddle
resulting in three separate contour. We note that for any value, the contour branching
off at the lowest saddle is too small to be visible in an rendered isosurface image.
The cactus representation also clearly shows that volume and area for this contour
are minute. The upper isosurface shows contours for an isovalue slightly above the
higher saddle. The cactus shows clearly that even though one of the components has
only small persistence, it has actual a volume comparable to the other component.

Figure 5 shows the topological cactus of the merge tree of fuel consumption rate
in a combustion simulation. Branch width corresponds to the cube root of number
of vertices, thus approximating volume. Spike length corresponds to the variance
of temperature. Each branch corresponds to a burning region around a maximum
of fuel consumption. The cactus shows that there are two types of regions: (i) Re-
gions that are relatively wide close to the maximum and thus are comprised of a
relatively large number of vertices and (ii) smaller regions with a thin region around
the maximum. The latter occur at lower fuel-consumption levels. The spikes show
that temperature variance is small for high fuel consumption, corresponding to in-
tense burning and is (expectedly) larger for fuel consumption corresponding to non-
burning regions.

Figure 6 shows the cactus of the merge tree of a 21 dimensional climate simula-
tion ensemble. The data set consists of 1197 climate simulations performed with the
Community Atmospheric Model (CAM) [4] each using a different combination of
21 input parameters. Such ensembles are used to study the sensitivity of the climate
predictions to changes in input parameters. The output function shown in Fig. 6 is
the average longwave energy output (FLUT) in the winter months (December, Jan-
uary, February). Most of the “volume” of the parameter space is collected in several
large but relatively low persistent branches of maxima. This is interesting as the
observed energy output is expected to be closer to the global minimum. Thus, it
appears that only a small portion of the input samples produces realistic outputs.
Nevertheless, all persistences are fairy low indicating that the overall behavior is
stable under perturbation of the input parameters.

6 Conclusions and Future Work

We have introduced topological cacti and demonstrated how they combine insights
obtained from the contour tree with metrics derived on a per contour bases. In par-
ticular, where importance measured by persistence differs from other metrics such
as area of volume, this combination can greatly enhance the usefulness of contour
tree representations. Going forward, we plan to improve both contour spectrum and
cactus representation. Our current approach of computing the contour spectrum in
piecewise polynomial/B-Spline representation works well for quantized data sets.
However, for real-valued data, each data value appears in the knot vector, making
this representation inefficient. To counteract this problem, we need to devise a sim-
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Fig. 5 Topological cactus of the merge tree of fuel consumption rate in a combustion simulation
(top). The width corresponds to the cube root of number of vertices in a region. Spike length
shows the variance of temperature. Isosurfaces for four different fuel consumption rates illustrating
burning regions for these thresholds (bottom).
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Fig. 6 Topological cactus of a climate simulation showing the merge tree of long wave energy
output in the winter months. The width corresponds to cube root of vertex count. The spike length
shows the mean value of FLUT. Since the scalar field is defined in 21-dimensional space, we cannot
show a corresponding isosurface visualization.

plification scheme that can be applied during the calculation and still support error
bounds.

For the cactus representation, we plan to improve the way connectors are drawn.
Drawing them as sphere sweeps sometimes hides details about the width of the
parent branch. Furthermore, we plan to improve the placement of spikes to make
their distribution more even, e.g., by increasing the number of spikes per angle for
very wide branches (i.e., where the first metric is large).
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